










representation of the network was then calculated by defining the

branch or fusion points and end points throughout the network

as nodes, and then determining the edges that link them (fig. 1d).

The Euclidean length of each edge was also calculated from the

segmented skeleton, and the cord thickness estimated from a

sequence of morphological dilations of the skeleton until the

threshold criterion was reached, combined with filtered pixel

intensities to capture the difference in reflectivity for cords of

different dimensions (fig. 1e). The final step for the fungal net-

works was to identify the initial food resource (fig. 1f) and then

redefine the graph in this region to connect all cords emanating

from the resource with a central node (fig. 1g). The performance

of the proposed approach applied to the entire image is presented

in figure 2.
When no enhancement was applied, the watershed and prun-

ing method was less reliable for low-contrast, low-resolution

images, such as those obtained for Phanerochaete velutina,

which has thinner, more diffuse cords, particularly at the grow-

ing margin. With varying levels of threshold, the network was

initially over-segmented, but rapidly became dis-connected as the

threshold was raised, making the choice of threshold critical (fig.

3a–e). In comparison, even these challenging networks were ef-

ficiently extracted following intensity-independent PCT enhance-

ment (see Section 4 for details) to give a very clean network over

a broad threshold range (fig. 3f–j), that greatly facilitated subse-

quent pruning operations (fig. 4).
To quantify the performance of our approach, five complex

regions of interest in the fungal images were selected. Manual

tracing of network centerlines was performed exhaustively by an

expert, to give a Gold Standard (GS) reference. In total, in all

regions of interest, 2256 network branches were annotated. The

GS and extracted network were compared using the network–

network distance measure "d (Gelasca et al., 2009), defined as the

average distance between each point on the GS network center-

line and the corresponding closest point on the extracted network

centerline, and vice versa. The standard deviation �"d of the

network-network distance measures was also calculated. The dis-

tance error evaluation for each ROI, where the network was

extracted using the proposed approach based on PCT vesselness,

is presented in Table 1. For all annotated regions, the average

distance error was "d ¼ 0:7393½pixel�. The recommended setting

used to calculate the PCT-based vesselness, can be found in

(Obara et al., 2012). Supplementary figure S4 presents normal-

ized histograms of distance error values "d for all analyzed re-

gions of interest in fungal images. Additionally, traced lines were

identified as true/false Positives depending on whether a line was

found in the gold standard at a distance smaller than two pixels.

Precision and recall were calculated for a set of comparable

approaches, and are shown in Table 2. Finally, a comparison

of the network thickness estimated using optical microscope

and our approach, for 10 randomly selected measurement

points, is presented in Supplementary figures S5 and S6.

5.1 Runtime performance

The average runtime spent to extract the fungal networks from

the grayscale images of 1000� 1000 pixels and 	60 K branches

(links) is 70s (without enhancement) and 200s (with PCT en-

hancement). This compares with manual segmentation of 3K

branches in about 2–3 days (Fricker et al., 2007). The runtime

performance of the implemented methods was tested on a PC

with Intel Core 2 Duo (T8300) system with 2GB memory, run-

ning Linux and MATLAB R2009b.

6 DISCUSSION

In this article, an image analysis and processing concept for gen-

eral curvilinear network detection has been introduced. The core

method is based on extraction of the network centerline from a

watershed segmentation, followed by a pruning procedure. This

approach can be directly applied to high-contrast images, but the

combination with a curvilinear feature enhancement based on

Phase Congruency Tensors provides a contrast invariant solution

for more challenging networks.
Using the watershed transform to calculate center lines pro-

vides several advantages over other more complex network-

analysis routines. First, it guarantees calculation of connected

networks. Second, it requires low computation times in compari-

son with other segmentation methods. By using a standard

morphological watershed transformation on raw or PCT-

enhanced images, we obtain an oversegmented skeleton image

which encompasses the entire biological network, but also a con-

tribution of false edges associated with subtle variations in back-

ground intensity that still yield basins in the watershed image.

These extraneous features can be removed post-segmentation by

judicious selection of cost-function weights or reduced by prior

network enhancement and noise-reduction using PCT or other

image enhancement techniques described in Section 4.

Visual inspection of the results (fig. 2 and Supplementary Figs.

S1–3) confirm the robustness of the proposed approach to ex-

tract networks from complex and challenging biological speci-

mens. In particular, the PCT-based enhancement is effective at

dealing with highly variable intensity levels of the curvilinear

features and is capable of providing high detection responses

on low contrast edges against a noisy background (fig. 3).

These properties are essential to detect structures in low contrast

regions of noisy images that are common in a large number of

biomedical images (Meijering et al., 2004).
The results demonstrate that the proposed approach provides

a fast and robust solution to detect and extract a graph repre-

sentation of complex curvilinear networks and overcomes a crit-

ical bottleneck in biological network analysis. This now permits

high-throughput measurements with improved resolution and

precision. The approach is generic and can be applied to a

wide range of biomedical images.

One of the major contributors to errors is optimal threshold

selection for the pruning procedure. Therefore, future work will

be focused on data-driven optimizing approaches to determine

optimal local or global threshold selections.
Once the network has been extracted, a wide range of network

parameters can be calculated (Fricker et al., 2007). As the data

are embedded in Euclidean space, a number of basic morpho-

logical measures can also be readily derived. These values either

have a straightforward biological meaning in their own right or

they provide a comparison with network structures in other do-

mains. In particular, the rich network structures extracted by this

approach provide a rapid means to examine network features,
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Fig. 3. Analysis of low contrast images of a fungal network of P. velutina for a range of threshold values t ¼ ½0:1� 0:9�: (a–e) skeleton pruning

calculated using image intensity alone, (f-j) skeleton pruning calculated using PCT-based vesselness enhancement. Center line (in red), branching points

(in green), and endpoints (in blue)

Fig. 4. Result of the proposed approach, using PCT vesselness when applied to a low contrast image of a fungal network of of P. velutina. (a) Extracted

network and the source of food overlaid on the input image: center line (in red), branching points (in green), endpoints (in blue) and food source

boundary (in magenta). (b) Pseudo-color coded plot of natural log of the cord thickness. Scale bar corresponds to 2 cm.

Fig. 2. Result of the proposed approach, using image intensity when applied to a high contrast image of a fungal network of P. impudicus. (a) Extracted

network and the source of food overlaid on the input image: center line (in red), branching points (in green), endpoints (in blue), and food source

boundary (in magenta). (b) Pseudo-color coded plot of natural log of the cord thickness. The red and green squares delimit the region of interest which

we have used to illustrate the performance of the method set out in Figure 1. The red and green squares delimit the region of interest which we have used

to illustrate the performance of the method set out in Figure 1. Scale bar corresponds to 2 cm
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such as transport efficiency, resilience, cost and control

complexity.
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Table 1. Distance error evaluation of the proposed method applied to

five regions of interest in fungal images

ROI No. No. of branches "d [pixel] �"d [pixel]

1 396 0.8206 1.1174

2 423 0.7081 1.1803

3 493 0.7626 1.2233

4 129 0.9196 1.5307

5 815 0.6734 1.0411

Table 2. Precision and recall evaluation of the proposed method, based

on intensity, vesselness, neuriteness, PCT vesselness, and PCT neurite-

ness, applied to five regions of interest in fungal images

Intensity Vesselness Neuriteness PCT

vesselness

PCT

neuriteness

Precision 0.91 0.95 0.94 0.98 0.98

Recall 0.56 0.70 0.63 0.95 0.94

The assessment of the rate of false positive and false negative segments has been

performed within an error diameter of the gold standard segments equal to 2[pixels].

Bioimage informatics approach to extract fungal networks

2381

 by guest on June 15, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/

